PLX097852

GSE99559: SQSTM1/p62-directed metabolic reprogramming is essential for normal neurodifferentiation

  • Organsim human
  • Type RNASEQ
  • Target gene
  • Project ARCHS4

Neurodegenerative disorders are an increasingly common and irreversible burden on society, often affecting the ageing population, but their aetiology and disease mechanisms are poorly understood. Studying monogenic neurodegenerative diseases, with known genetic cause, provides an opportunity to understand cellular mechanisms also affected in more complex disorders. We recently reported that loss-of-function mutations in the autophagy adaptor protein, SQSTM1/p62, lead to a slowly progressive neurodegenerative disease presenting in childhood. To further elucidate the neuronal involvement, we studied the cellular consequences of loss of p62 in a neuroepithelial stem (NES) cell model and differentiated neurones, derived from reprogrammed p62 patient cells, or by CRISPR/Cas9-directed gene editing in NES cells. Transcriptomic and proteomic analyses suggest that p62 is essential for neuronal differentiation by controlling the metabolic shift from aerobic glycolysis to oxidative phosphorylation required for neuronal maturation. This shift is blocked by the failure to sufficiently downregulate lactate dehydrogenase expression due to the loss of p62, possibly through impaired Hif-1 downregulation and increased sensitivity to oxidative stress. The findings implicate an important role for p62 in neuronal energy metabolism and particularly in the regulation of the shift between glycolysis and oxidative phosphorylation, required for normal neurodifferentiation. SOURCE: Florian,Andreas,Schober (florian.schober@ki.se) - Division of Molecular Metabolism Karolinska Institutet

View on GEOView in Pluto

Key Features

Enhance your research with our curated data sets and powerful platform features. Pluto Bio makes it simple to find and use the data you need.

Learn More

14K+ Published Experiments

Access an extensive range of curated bioinformatics data sets, including genomic, transcriptomic, and proteomic data.

Easy Data Import

Request imports from GEO or TCGA directly within Pluto Bio. Seamlessly integrate external data sets into your workflow.

Advanced Search Capabilities

Utilize powerful search tools to quickly find the data sets relevant to your research. Filter by type, disease, gene, and more.

Analyze and visualize data for this experiment

Use Pluto's intuitive interface to analyze and visualize data for this experiment. Pluto's platform is equipped with an API & SDKs, making it easy to integrate into your internal bioinformatics processes.

Read about post-pipeline analysis

View QC data and experiment metadata

View quality control data and experiment metadata for this experiment.

Request import of other GEO data

Request imports from GEO or TCGA directly within Pluto Bio.

Chat with our Scientific Insights team